A thermoresponsive polydiolcitrate-gelatin scaffold and delivery system mediates effective bone formation from BMP9-transduced mesenchymal stem cells.

نویسندگان

  • Jixing Ye
  • Jing Wang
  • Yunxiao Zhu
  • Qiang Wei
  • Xin Wang
  • Jian Yang
  • Shengli Tang
  • Hao Liu
  • Jiaming Fan
  • Fugui Zhang
  • Evan M Farina
  • Maryam K Mohammed
  • Yulong Zou
  • Dongzhe Song
  • Junyi Liao
  • Jiayi Huang
  • Dan Guo
  • Minpeng Lu
  • Feng Liu
  • Jianxiang Liu
  • Li Li
  • Chao Ma
  • Xue Hu
  • Rex C Haydon
  • Michael J Lee
  • Russell R Reid
  • Guillermo A Ameer
  • Li Yang
  • Tong-Chuan He
چکیده

Successful bone tissue engineering requires at the minimum sufficient osteoblast progenitors, efficient osteoinductive factors, and biocompatible scaffolding materials. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we investigated the potential use of a biodegradable citrate-based thermosensitive macromolecule, poly(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) mixed with gelatin (PPCNG) as a scaffold for the delivery of BMP9-stimulated MSCs to promote localized bone formation. The addition of gelatin to PPCN effectively enhanced the cell adhesion and survival properties of MSCs entrapped within the gel in 3D culture. Using the BMP9-transduced MSC line immortalized mouse embryonic fibroblasts (iMEFs), we found that PPCNG facilitated BMP9-induced osteogenic differentiation of iMEFs in vivo and promoted the formation of well-ossified and vascularized trabecular bone-like structures in a mouse model of ectopic bone formation. Histologic evaluation revealed that vascularization of the bony masses retrieved from the iMEFs  +  PPCNG group was significantly more pronounced than that of the direct cell injection group. Accordingly, vascular endothelial growth factor (VEGF) expression was shown to be significantly higher in the bony masses recovered from the iMEFs  +  PPCNG group. Taken together, our results suggest that PPCNG may serve as a novel biodegradable and injectable scaffold and carrier for gene and cell-based bone tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repair of critical sized cranial defects with BMP9-transduced calvarial cells delivered in a thermoresponsive scaffold

Large skeletal defects caused by trauma, congenital malformations, and post-oncologic resections of the calvarium present major challenges to the reconstructive surgeon. We previously identified BMP-9 as the most osteogenic BMP in vitro and in vivo. Here we sought to investigate the bone regenerative capacity of murine-derived calvarial mesenchymal progenitor cells (iCALs) transduced by BMP-9 i...

متن کامل

Characterization of scaffold carriers for BMP9-transduced osteoblastic progenitor cells in bone regeneration.

Successful bone tissue engineering at least requires sufficient osteoblast progenitors, efficient osteoinductive factors, and biocompatible scaffolding materials. We have demonstrated that BMP9 is one of the most potent factors in inducing osteogenic differentiation of mesenchymal progenitors. To facilitate the potential use of cell-based BMP9 gene therapy for bone regeneration, we characterize...

متن کامل

Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells.

Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like progenitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological factors that can effectively induce osteogenic differentiation of MA...

متن کامل

Healing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration

Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...

متن کامل

In vitro Assay of Human Gingival Scaffold in Differentiation of Rat’s Bone Marrow Mesenchymal Stem Cells to Keratinocystes

Objective(s)Tissue engineering is an attractive science because it promises new therapeutic strategies for repairing organs that have lost functions due to damage. The purpose of this study was to evaluate induction effect of human gingival scaffold in tissue engineering for skin regeneration.Materials and MethodsTissue samples were obtained from crown-lengthening procedures and wisdom teeth re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical materials

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2016